Stam, C. H. \& MacGillavry, C. H. (1963). Acta Cryst. 16, 62-68.
Sterling, C. (1964). Acta Cryst. 17, 500-505.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Thomas, R. \& Coppens, P. (1972). Acta Cryst. B28, 18001806.

Watkin, D. J. \& Hamor, T. A. (1971). J. Chem. Soc. (B), pp. 2167-2170.

Wheatley, P. J. (1965). J. Chem. Soc. pp. 3136-3143.
Wheatley, P. J. (1961). J. Chem. Soc. pp. 4936-4938.
Williams, D. A. \& Wright, D. A. (1973). J. Cryst. Mol. Struct. 3, 55-64.
Williams, R. M. \& Wallwork, S. C. (1967). Acta Cryst. 22, 899-906.
Wright, D. A., Seff, K. \& Shoemaker, D. P. (1972). J. Cryst. Mol. Struct. 2, 41-51.

Zachariasen, D. H. (1968). Acta Cryst. A24, 212-216.

# The Conformation of 

 3,20-Diethylenedioxy-9ß,11 $\beta$-oxido-11 $\alpha$-acetoxy-9,11-seco-11,19-cyclo-5 $\alpha, 14 \beta, 17 \alpha$-pregnaneBy Isabella L. Karle<br>Laboratory for the Structure of Matter, Naval Research Laboratory, Washington, D.C. 20375, U.S.A.

(Received 29 October 1974; accepted 22 January 1975)


#### Abstract

The title compound, $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{7}$, has been derived by photocyclization of a pregnane derivative and fragmentation with $\mathrm{Pb}(\mathrm{OAc})_{4}$. It crystallizes in space group $P 2_{1} 2_{1} 2_{1}$ with $a=13.833$ (7), $b=25.375$ (20) and $c=7.289$ (4) $\AA$. The structure has been derived by using a combination of direct phase determination and a translation function. Introduction of an oxygen bridge between $C(9)$ and $C(11)$ and ring formation by the bonding of $\mathrm{C}(11)$ to $\mathrm{C}(19)$ have created strains in the molecule which are reflected in several CCC angles with values of $118^{\circ}$ to $122^{\circ}$ rather than near the more usual $111^{\circ}$ in rings $A, B$ and $C$. The seven-membered ring $C$ has the boat conformation. Disorder in the two extreme five-membered rings limited the number of observable data. The final $R$ is $11.4 \%$ for 1500 data.


The ultraviolet irradiation of various derivatives of pregnane can lead to a product in which cyclization has occurred between $\mathrm{C}(11)$ and the methyl group at $\mathrm{C}(19)$ to make a four-membered ring (see e.g. Gull, Saito, Wehrli \& Jeger, 1974). Fragmentation of the new cyclo-product (II) by $\mathrm{Pb}(\mathrm{OAc})_{4}$ yields (IV) as the main product rather than the expected product (III). An X-ray diffraction analysis of the structure of (IV) confirmed the formula and stereo configuration.


The stereoid nucleus undergoes a considerable conformational change with the ring closure between $\mathrm{C}(11)$ and $\mathrm{C}(19)$ and the introduction of an oxygen atom
between $\mathrm{C}(9)$ and $\mathrm{C}(11)$. Therefore, it was considered desirable to obtain detailed structural information for this region where considerable strain must be relieved by changes in bond angles as well as torsional angles.

## Experimental

Colorless crystals, somewhat opaque, in the form of elongated prisms were provided by Drs H. Wehrli and O. Jeger of the ETH, Zürich. The crystal data are: space group $P 2_{1} 2_{1} 2_{1} ; Z=4 ; a=13 \cdot 833(7), b=25 \cdot 375(20), c=$ $7 \cdot 289$ (4) $\AA ; V=2558.5 \AA^{3} ; \mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{7} ;$ M.W. $=476 \cdot 62$; $D_{\text {calc }}=1.237 \mathrm{~g} \mathrm{~cm}^{-3} ;$ size $0.20 \times 0.15 \times 0.9 \mathrm{~mm} ; \mu=$ $7.31 \mathrm{~cm}^{-1}$. Intensity data were collected with Cu radiation ( $\lambda=1.54178 \AA$ ) on a four-circle automatic diffractometer with the $\theta-2 \theta$ scan mode, a scan width of $2 \cdot 1^{\circ}$ and a scan rate of $2^{\circ} \mathrm{min}^{-1}$. The background was counted for 10 s at either end of the scan. Three reflections used as standards were monitored every hour and indicated a gradual deterioration of the crystal. The experimental $I_{h k l}$ were scaled to compensate for the loss of scattering power up to a final factor of 1.09 . Data were collected to a scattering angle of $2 \theta=120^{\circ}$ although the data with $2 \theta>90^{\circ}$ were very weak with only a few reflections of moderate size. For the least-squares refinement, only those data with $2 \theta<100^{\circ}$ were used.

Phases were determined directly from the normalized structure factors $\left|E_{\mathrm{h}}\right|$ by means of the symbolic addition procedure. The best of four $E$ maps showed a 13atom fragment that did not develop more atoms when used as a partial structure in the tangent formula (Karle, 1968). The strongest peaks in a translation function (Karle, 1972).

$$
\sum\left(\left|E_{\text {obs }}\right|^{2}-1\right)\left(\left|E_{\text {calc }}\right|^{2}-1\right) \cos 2 \pi \mathbf{h} \cdot r,
$$

computed with the $\left(\left|E_{\text {calc }}\right|^{2}-1\right)$ factors based on the coordinates for the 13 -atom fragment, indicated a onedimensional shift of $\Delta 2 y= \pm 0.09$. The use of the 13atom fragment moved by -0.045 in the $y$ direction as a partial structure for the refinement and expansion of phases by the tangent formula yielded the complete structure in the next $E$ map. As initial phases for the tangent formula, only those terms were used for which $\left|E_{\mathrm{b}}\right|>1.5$ and $\left|F_{\mathrm{b}}\right|_{\text {calc }}>0.35\left|F_{\mathrm{b}}\right|_{\text {obs }}$. Subsequently phases were developed for all $\left|E_{\mathbf{h}}\right|>1 \cdot 1$. Fig. 1 shows the relationship between the 13 -atom fragment and the correct placement of the molecule. It should be noted that even though three of the atoms in the fragment were spurious and a fourth one was misplaced by $1.0 \AA$ from the correct position, neither the translation function nor the partial structure procedure were affected adversely. After translation, the remaining nine atoms were within $0 \cdot 3 \AA$ of the correct positions. The shift from the incorrect to the correct position corresponds to the spacing for the $0,22,0$ reflection, $|E|=1 \cdot 90$, with no change in phase.

Full-matrix anisotropic least-squares refinement on the 34 carbon and oxygen atoms with $1502 F$ data, with $2 \theta<100^{\circ}$, and weights based on counting statistics (Gilardi, 1973) resulted in an $R$ of $0 \cdot 16$. A difference map calculated at this stage showed the positions of relatively few hydrogen atoms. Accordingly, the coordinates for most of the 40 hydrogen atoms were calculated on the basis of ideal $\mathrm{C}-\mathrm{H}$ bond lengths and angles and inserted into the least-squares refinement as constant parameters. Several more cycles of refinement with anisotropic thermal parameters resulted in a conventional $R$ of $11 \cdot 4 \%$ for all the data with $2 \theta<100^{\circ}$ and a weighted $R$ of $4 \cdot 2 \%$.*

Coordinates and thermal parameters are listed in Table 1 while the bond lengths, bond angles and torsional angles are shown in Fig. 2. The numbering scheme for the atoms and the labeling of the rings are indicated in Fig. 2(c).

## Results and discussion

The rapid decrease of intensity as a function of scattering angle for values of $2 \theta$ greater than $90^{\circ}$, as well as the relatively high $R$ value, indicates a fair amount

[^0]

Fig. 1. The 13 -atom fragment from the initial phase determination and the complete structure as derived from the 13 -atom fragment when shifted by $y-0.045$. Note that three atoms marked with an X in the original fragment are spurious. The size of the circles is proportional to the weight of the peaks in the $E$ map.




Fig. 2. Bond lengths, bond angles and torsional angles. The numbering of the atoms and the labeling of the rings are indicated in the lowest diagram.
of positional disorder. The thermal ellipsoids in the stereo diagram of the molecule, Fig. 3, as well as the $B_{i j}$ values in Table 1, show that the disorder occurs chiefly in the outermost atoms in the five-membered
rings at either end of the molecule. The high $R$ is correlated with high standard deviations for the bond lengths and angles, i.e. $\sim 0.017 \AA$ for bonds in rings $A$, $B, C, D$, and $G$ and up to $\sim 0.025 \AA$ for bonds in rings

Table 1. Fractional coordinates and thermal parameters with standard deviations The thermal parameters are of the form $T=\exp \left[-\frac{1}{4}\left(B_{11} h^{2} a^{* 2}+B_{22} k^{2} b^{* 2}+B_{33} l^{2} c^{* 2}+2 B_{12} h k a^{*} b^{*}+2 B_{13} h l a^{*} c^{*}+2 B_{23} k l b^{*} c^{*}\right)\right]$.

|  | $x$ | $y$ | $z$ | $B_{11}$ | $B_{22}$ | $B_{33}$ | $B_{12}$ | $B_{13}$ | $B_{23}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C(1) | $0 \cdot 3468$ | 0.3837 | $-0 \cdot 1345$ | $5 \cdot 57$ | $3 \cdot 38$ | $4 \cdot 22$ | $-0.02$ | $-2 \cdot 10$ | 0.74 |
| C(2) | 0.2787 | 0.4313 | $-0 \cdot 1585$ | $3 \cdot 53$ | $5 \cdot 60$ | 8.99 | $-0.37$ | $-0.05$ | $1 \cdot 26$ |
| C(3) | $0 \cdot 1935$ | 0.4273 | $-0.0270$ | $5 \cdot 88$ | $3 \cdot 19$ | 11.46 | $-0.03$ | $-1.88$ | $-0.45$ |
| C(4) | $0 \cdot 2144$ | 0.4164 | $0 \cdot 1711$ | $4 \cdot 81$ | $4 \cdot 88$ | 6.49 | 0.22 | $0 \cdot 60$ | 1.04 |
| C(5) | 0.2811 | 0.3674 | $0 \cdot 1828$ | $3 \cdot 82$ | $4 \cdot 48$ | 7.20 | $-0.18$ | 0.07 | $0 \cdot 51$ |
| C(6) | 0.2910 | $0 \cdot 3497$ | $0 \cdot 3863$ | $4 \cdot 18$ | $4 \cdot 75$ | 7.94 | $-0.13$ | 1.00 | $1 \cdot 37$ |
| C(7) | 0.3634 | $0 \cdot 3034$ | $0 \cdot 3928$ | 6.08 | 5.95 | 9.25 | 0.28 | $0 \cdot 27$ | $3 \cdot 22$ |
| C(8) | 0.4551 | $0 \cdot 3237$ | $0 \cdot 3117$ | 3.25 | $4 \cdot 44$ | 5.66 | $-0.49$ | $0 \cdot 24$ | 1.04 |
| C(9) | 0.4411 | $0 \cdot 3287$ | $0 \cdot 1013$ | 3.94 | 2.97 | $7 \cdot 43$ | $-1.57$ | $0 \cdot 16$ | $0 \cdot 51$ |
| C(10) | 0.3730 | $0 \cdot 3760$ | 0.0654 | 3.45 | $2 \cdot 88$ | $7 \cdot 86$ | $-0.71$ | 1.57 | $0 \cdot 41$ |
| C(11) | 0.5487 | $0 \cdot 3963$ | 0.0948 | $4 \cdot 18$ | $2 \cdot 36$ | $5 \cdot 81$ | 0.63 | $0 \cdot 23$ | $-0.36$ |
| C(12) | 0.6173 | $0 \cdot 3902$ | 0.2679 | $3 \cdot 16$ | $4 \cdot 18$ | 7.44 | $-0.73$ | $-1.43$ | $-0.13$ |
| C(13) | 0.6410 | 0.3341 | 0.3560 | $4 \cdot 43$ | $3 \cdot 56$ | 11.06 | $1 \cdot 19$ | 2.00 | 1.57 |
| C(14) | 0.5525 | 0.2941 | $0 \cdot 3639$ | $4 \cdot 35$ | $4 \cdot 86$ | 9.36 | $-0.56$ | 0.89 | $1 \cdot 60$ |
| C(15) | $0 \cdot 5798$ | 0.2447 | 0.2307 | $5 \cdot 11$ | $4 \cdot 64$ | 12.73 | $1 \cdot 11$ | -0.88 | $-0.21$ |
| C(16) | 0.6660 | 0.2609 | $0 \cdot 1120$ | $5 \cdot 11$ | $3 \cdot 24$ | 12.95 | 0.89 | $-0.57$ | $-3.89$ |
| C(17) | $0 \cdot 7177$ | $0 \cdot 2985$ | 0.2459 | $5 \cdot 16$ | $4 \cdot 14$ | 6.59 | $-0.41$ | 0.43 | $0 \cdot 84$ |
| C(18) | 0.6731 | $0 \cdot 3457$ | 0.5549 | $7 \cdot 80$ | $9 \cdot 21$ | $2 \cdot 45$ | $1 \cdot 12$ | $-1.93$ | -1.23 |
| C(19) | $0 \cdot 4458$ | 0.4202 | $0 \cdot 1393$ | $2 \cdot 96$ | $3 \cdot 06$ | 7.24 | 0.67 | $-0.19$ | $0 \cdot 32$ |
| C(20) | 0.8049 | $0 \cdot 3274$ | $0 \cdot 1452$ | $3 \cdot 55$ | 4.56 | $14 \cdot 80$ | 0.74 | $0 \cdot 69$ | -4.91 |
| C(21) | 0.7916 | $0 \cdot 3449$ | $-0.0493$ | $6 \cdot 38$ | 11.05 | $5 \cdot 12$ | 0.47 | -0.65 | $3 \cdot 87$ |
| C(22) | 0.9628 | $0 \cdot 3066$ | $0 \cdot 2428$ | $5 \cdot 41$ | $6 \cdot 74$ | $12 \cdot 52$ | $-0.26$ | -0.29 | 1.78 |
| C(23) | 0.9292 | 0.3494 | 0.3655 | 6.90 | 11.05 | $15 \cdot 26$ | 0.99 | -4.16 | $-1.96$ |
| C(24) | 0.0387 | 0.4595 | $-0.0738$ | $2 \cdot 80$ | $12 \cdot 41$ | $20 \cdot 37$ | $1 \cdot 13$ | -0.23 | $7 \cdot 81$ |
| C(25) | 0.0507 | 0.4063 | -0.1927 | $8 \cdot 69$ | $8 \cdot 26$ | 22.68 | $-3.47$ | $-10.27$ | 5.09 |
| C(26) | 0.6215 | 0.4744 | $-0.0380$ | $2 \cdot 86$ | $4 \cdot 62$ | $11 \cdot 54$ | 1.79 | 1.47 | $0 \cdot 33$ |
| C(27) | $0 \cdot 6708$ | 0.4924 | -0.2033 | $7 \cdot 70$ | $4 \cdot 95$ | $12 \cdot 20$ | $-0.30$ | 3.59 | $3 \cdot 81$ |
| O(1) | $0 \cdot 1341$ | 0.4738 | -0.0458 | 4.47 | $5 \cdot 40$ | $13 \cdot 32$ | $0 \cdot 52$ | -1.01 | 1.55 |
| $\mathrm{O}(2)$ | $0 \cdot 1318$ | 0.3850 | $-0.1003$ | 5.55 | $6 \cdot 30$ | $10 \cdot 14$ | $-0.68$ | -2.51 | $0 \cdot 87$ |
| O(3) | 0.5291 | $0 \cdot 3465$ | 0.0136 | $4 \cdot 01$ | $2 \cdot 69$ | $5 \cdot 68$ | $0 \cdot 31$ | -0.34 | $-0.23$ |
| O(4) | $0 \cdot 5939$ | 0.4231 | $-0.0548$ | $3 \cdot 50$ | $3 \cdot 62$ | 6.91 | $-0 \cdot 12$ | $0 \cdot 74$ | $0 \cdot 82$ |
| $\mathrm{O}(5)$ | 0.6063 | 0.4978 | $0 \cdot 1066$ | $4 \cdot 72$ | $3 \cdot 51$ | 12.74 | -0.68 | 1.36 | -0.93 |
| O(6) | $0 \cdot 8821$ | 0.2869 | $0 \cdot 1445$ | $4 \cdot 72$ | $6 \cdot 38$ | $12 \cdot 29$ | 1.43 | $-0.93$ | $-2.48$ |
| $\mathrm{O}(7)$ | $0 \cdot 8418$ | 0.3665 | 0.2713 | $4 \cdot 90$ | $5 \cdot 81$ | $10 \cdot 78$ | $0 \cdot 70$ | -1.59 | -2.04 |



Fig. 3. Stereodiagram of the molecule. Thermal ellipsoids are at the $50 \%$ probability level (Johnson, 1965).


Fig. 4. Stereodiagram of the packing scheme. The axial directions are $\mathbf{a} \downarrow, \mathbf{b} \rightarrow$ and $\mathbf{c}$ directed up from the page.
$E$ and $F$. Standard deviations for angles are of the order of $1 \cdot 0^{\circ}$. These values for the standard deviations are derived from the least-squares refinement. Comparison of the bond lengths in this determination with those of other steroids with better scattering characteristics indicates that the values of the standard deviations are actually higher. Nevertheless, the conformational features of the molecule are established and the areas of accommodation for the strain caused by the oxygen bridge between $C(9)$ and $C(11)$ and the ring closure by the $\mathrm{C}(11)-\mathrm{C}(19)$ bond are quite apparent. For example, angles $\mathrm{C}(2) \mathrm{C}(3) \mathrm{C}(4)=118^{\circ}, \mathrm{C}(10) \mathrm{C}(5)$ $\mathrm{C}(6)=120^{\circ}$, and $\mathrm{C}(11) \mathrm{C}(12) \mathrm{C}(13)=122^{\circ}$ (in rings $A, B$ and $C$, respectively) are considerably larger than the values usually encountered for tetrahedral carbon atoms.

Rings $A$ and $B$ are in the chair conformation while the seven-membered ring $C$ has a boat conformation. The five-membered rings $D, E$ and $F$ are close to the half-chair form with $\Delta$ values of $+4 \cdot 6^{\circ},+1 \cdot 5^{\circ}$ and $-3 \cdot 3^{\circ}$, respectively, where

$$
\tan \frac{\Delta}{2}=\frac{\left(\varphi_{2}+\varphi_{4}\right)-\left(\varphi_{1}+\varphi_{3}\right)}{3.0777 \varphi_{0}}
$$

(Altona, Giese \& Romers, 1967). Ring $G$, on the other hand, has $\Delta=34 \cdot 0^{\circ}$, corresponding to an envelope form with $C(9)$ out of the plane formed by the other four atoms. The acetoxy group is nearly coplanar with atoms $\mathrm{C}(11)$ and $\mathrm{O}(3)$ with the $\mathrm{O}(3) \mathrm{C}(11) \mathrm{O}(4) \mathrm{C}(26)$ dihedral angle equal to $177^{\circ}$. Atom $\mathrm{O}(5)$ in the acetoxy
group is equidistant at $2.98 \AA$ from $\mathrm{C}(12)$ and $\mathrm{C}(19)$.
The cis junction between rings $C$ and $D$ folds the molecule at the $\mathrm{C}(13)-\mathrm{C}(14)$ bond. As a consequence of the fold, atom $\mathrm{C}(16)$ in ring $D$ is within $2.97 \AA$ of the bridge oxygen $\mathrm{O}(3)$. Rotation is possible about the $\mathrm{C}(17)-\mathrm{C}(20)$ bond and an equilibrium position appears to be at a torsional angle value of $-90^{\circ}$ for the $\mathrm{C}(13) \mathrm{C}(17) \mathrm{C}(20) \mathrm{C}(21)$ angle. This orientation brings the methyl carbon atom $\mathrm{C}(21)$ to within $3.38 \AA$ of atom $\mathrm{O}(4)$ and an intramolecular $\mathrm{C}(12) \cdots \mathrm{O}(6)$ separation of $3 \cdot 16 \AA$. There are five intervening atoms between $\mathrm{C}(21)$ and $O(4)$ and three between $C(12)$ and $O(6)$.
The packing scheme is illustrated in the stereodiagram in Fig. 4. The molecules are held together by van der Waals forces with one of the closest approaches, $3.32 \AA$, being between methyl groups $\mathrm{C}(18)$ and $\mathrm{C}(21)$ in molecules separated by one translational unit in the c direction. Other near approaches are $\mathrm{O}(5) \cdots \mathrm{C}(24)=$ $3 \cdot 26 \AA, O(5) \cdots C(25)=3 \cdot 57 \AA$, and $O(5) \cdots C(27)=$ $3 \cdot 39 \AA$.

## References

Altona, C., Geise, H. J. \& Romers, C. (1967). Tetrahedron, 24, 13-32.
Gilardi, R. D. (1973). Acta Cryst. B29, 2089-2095.
Gull, P., Saito, Y., Wehrli, H. \& Jeger, O. (1974). Helv. Chim. Acta. In the press.
Johnson, C. K. (1965). ORTEP. Oak Ridge National Laboratory Report ORNL-3794.
Karle, J. (1968). Acta Cryst. B24, 182-186.
Karle, J. (1972). Acta Cry'st. B28, 820-824.

# Structure Cristalline du Chlorhydrate de Pronéthanol, (+)-Isopropylamino-1 ( $\boldsymbol{\beta}$-Naphtyl)-2 Ethanol-2 Chlorhydrate 

Par M. Gadret M. Goursolle, J. M. Leger et J. C. Colleter<br>Laboratoire de Chimie Analytique, Faculté de Pharmacie, Université de Bordeaux II, rue Leyteire, 33000 Bordeaux, France et Laboratoire de Cristallographie, associé au CNRS, Université de Bordeaux I, 351 cours de la Libération, 33405-Talence, France

(Rȩ̧u le 10 décembre 1974, accepté le 16 janvier 1975)


#### Abstract

The crystal structure of pronethanol hydrochloride ( $\left.\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NOCl}\right)$ has been solved by direct methods with program MULTAN. Crystal data are: space group $P 2_{1}, Z=2, a=12 \cdot 55$ ( 0 ), $b=9.96$ ( 9 ), $c=$ 5.96 (1) $\AA, \beta=96 \cdot 00^{\circ}$. The final $R$ value is 0.041 . The $\mathrm{Cl}^{-}$anion is responsible for crystalline cohesion.


## Introduction

Nous poursuivons l'étude de la structure tridimensionnelle de dérivés adrénolytiques $\beta$ bloquants. Dans cette optique nous rapportons ici la structure cristalline du chlorhydrate de pronéthanol (Fig. 1).

## Partie expérimentale

Le chlorhydrate de pronéthanol cristallise à partir d'une solution saturée d'éthanol sous forme de petits prismes monocliniques incolores.

Les diagrammes de Bragg et de Weissenberg nous


[^0]:    * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30869 ( 7 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

